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Abstract   

The detailed knowledge about vertical and lateral facies 
distribution is essential for the characterization of 
reservoir properties, playing a fundamental role for the 
efficiency of the development and production of oil fields. 
Data integration is required for this purpose, however the 
variety of data resolution makes this task difficult by 
conventional methods. In this regard, alternative 
approaches, such as artificial intelligence, have been 
widely applied in the oil industry in recent years towards 
reduce uncertainties and exploratory risks related to the 
correct prediction of facies distribution. This work aimed 
to apply a neural network-based methodology called 
Democratic Neural Network Association (DNNA) from 
which electrofacies and poststack seismic attributes were 
used to train a neural network that established the 
relationships between these data in order to predict the 
facies distribution in the studied area, whose target was 
one of the most relevant onshore reservoirs in Brazil, the 
Carmópolis Member in the context of the Siririzinho and 
Castanhal fields. The results of this unprecedent study in 
the Sergipe-Alagoas basin, although preliminary, 
demonstrated that the methodology is a useful tool to deal 
with geological uncertainties, which was able to predict 
the reservoir facies distribution with good accuracy. 
Furthermore, the results showed a high degree of 
similarity with previous depositional models of the 
Carmópolis Member, which reveals the reliability of the 
method. 

Introduction 

The application of new methods and technologies to 
reduce risks and operational costs, as well as to increase 
the recovery factor in onshore and offshore fields, is a 
permanent issue in the oil and gas industry, which often 
involves large investments, where improving the 
knowledge of subsurface conditions is critical to achieving 
these goals. 

The correct prediction of facies distribution and fluid 
content throughout the reservoir is one of the leading 
challenges in hydrocarbon recovery due to the 
uncertainties related to the determination of the rock 
properties in modeling studies, which require the 

integration of different types of data (well logs, cuttings, 
cores, pre and poststack seismic attributes) with different 
resolutions. Consequently, manual integration is a time-
consuming and sometimes even impractical job (Hami-
Eddine et al., 2015).  

On the other hand, the use of artificial intelligence has 
been widely discussed in the oil industry, such as the 
machine learning approach as a tool for the automatic 
identification and classification of geological faults in 
seismic data (Li et al., 2019; Wu et al., 2018), salt bodies 
(Zeng et al., 2018) and facies (Hall, 2016). This is due to 
the efficient and fast integration of multidimensional data 
from several types of algorithms that are trained based on 
specific data and thus learn to recognize hidden and 
complex patterns in the subsurface (Anifowose, 2011). 

In order to exemplify and evaluate the use of this method,  
the purpose of this study was to predict the reservoirs 
facies distribution of Carmópolis Member in the context of 
the Siririzinho and Castanhal oil fields (Figure 1), located 
at Aracaju Structural High, onshore of Sergipe-Alagoas 
basin, using a supervised machine learning approach that 
aimed to combine seismic attributes and electrofacies to 
be able to make the prediction of specific lithofacies in 
regions far away from the wells. 

 
Figure 1. Location of Siririzinho and Castanhal fields in 
Sergipe-Alagoas basin. 

Method 

The workflow applied here was divided into four stages, 
according to the flowchart in Figure 2: data loading and 
quality control (QC), well to seismic tie, seismic 
interpretation and attributes generation and facies 
prediction.  
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Figure 2. Flowchart summarizing the steps of the 
adopted methodology. 

1. Data loading and quality control 

The dataset available consisted in approximately 82 km² 
of 3D poststack seismic and 3 wells with their respective 
logs, markers and electrofacies (Figure 3). 

 
Figure 3. Dataset used in this study. 

The QC of wells was based on standardizing the names 
and units of the logs, removing spikes and checking 
missing data.  

For the seismic data, after checking the loading 
parameters according to the header, in order to improve 
the data resolution and lateral continuity of the reflectors, 
the volume was preconditioned using the Dip Steered 
Enhancement (Figure 4), a structure-oriented filtering that 
extracts dip and azimuth information from each seismic 
trace and differentiates it between reflectors and random 
noises that are minimized, highlighting structural and 
stratigraphic features (Chopra & Marfurt, 2007).  

2. Well to seismic tie 

It is a fundamental step for seismic interpretation, whose 
function is to relate the subsurface data obtained from the 
wells, acquired in depth, with the seismic data, measured 
in time.  

The procedure consisted of generating synthetic 
seismograms in each well, which were used to adjust the 
wells to the original seismic trace. 

 

 
Figure 4. Inline 12 showing the noise and low quality of 
the original seismic data (A), the filtering and 
improvement of the lateral continuity of the reflectors after 
application of Dip Steered Enhancement (B). 

3. Seismic interpretation and attributes generation 

Seismic interpretation aimed to define the geometry of the 
facies prediction model. Due to the difficulty of defining a 
reflector that corresponds to the top of the Carmópolis 
Member, it was decided to map and define the top of 
Ibura Member as a reference marker to the model’s upper 
boundary (Figure 5). As for the lower limit, a sampling 
window of 220 ms down was defined from the same 
reflector, which allowed to cover the entire reservoir 
thickness. 

 
Figure 5. Understanding of local geology from the 
seismic interpretation of inline 12 (A), interpreted horizon 
referring to the top of the Ibura Member (B). 

Based on the potential for identifying different geological 
features some seismic attributes were generated to later 
be used as input for the workflow of facies prediction 
(Figure 6): 

Coherence – which measures the trace-to-trace similarity 
of the seismic waveform within a small analysis window, 
very useful in identifying and visualizing faults and 
stratigraphic features (Herron, 2011); 
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RMS amplitude - defined as the square root of the 
average of the squared amplitudes (Sheriff, 2002), from 
which hydrocarbon indicators can be mapped directly by 
measure reflectivity in a zone of interest; 

Relief – attribute that provides an aid to structural 
interpretation, highlighting high impedance contrasts; 

Spectral Decomposition - reveals the seismic signal at its 
constituent frequencies, which allows the interpreter to 
see the amplitude and phase tuned at specific 
wavelengths (Othman et al., 2016); 

Envelope - represents the instantaneous energy of the 
signal and is proportional in its magnitude to the reflection 
coefficient, which is useful in highlighting gas 
accumulation, discontinuities, faults, tuning effect and 
sequence boundaries (Latiff et al., 2001). 

 
Figure 6. Timeslice 240 ms of the generated seismic 
attributes: DSE (A), Coherence (B), RMS Amplitude (C), 
Relief (D), Spectral Decomposition RBG blend (red = 10 
Hz, green = 30 Hz, blue = 50 Hz) (E) and Envelope (F). 

4. Facies prediction 

The software used for doing the rock prediction was the 
Rock Type Classification, from Emerson/Paradigm. This 
application uses the method Democratic Neural Network 
Association (DNNA) (Hami-Eddine et al., 2015) to predict 
the facies.   

DNNA is a methodology based on neural network that 
uses a probabilistic approach consisting of the training of 
well logs and pre or poststack seismic attributes in order 
to find seismic patterns that can predict lithofacies 
distribution and uncertainty, proven to be efficient for 
predicting lithology in the regions away the wells (Hami-
Eddine et al., 2015).  

Following the workflow shown in Figure 7, the definition 
of the training set was composed of the electrofacies 
identified in the 3 wells and 6 seismic attributes previously 
generated.  

Then, the electrofacies were upscaled to remove thin 
layers that cannot be identified in the seismic due to the 
low resolution. A vertical sampling interval of 10 meters 
has been defined, the rate at which facies information and 
seismic attributes will be extracted throughout the well (in 
the zone of interest) to create the training set. 

After processing, the neural network was trained, and the 
QC of its predictive capacity was done by evaluating the 
probability of facies being correctly predicted along the 

well, associated with the analysis of the reconstruction 
rate of each facies at the analyzed intervals. 

 
Figure 7. Workflow and data used to compose the 
training set. 

Thus, the relationship established between the facies and 
attribute responses was defined and validated, and then 
the data from the study area could be classified by the 
trained neural network. 

Results 

The more scattered the network's neurons are in the 
range of attribute values, the greater their potential to 
distinguish each of the facies, which contributes positively 
to the learning process (Emerson, 2019). Despite the low 
density of neurons caused by the low sampling rate, their 
distribution is completely dispersed in most attributes, 
except for the “coherence”, which showed a concentration 
in its central range (Figure 8). 

 
Figure 8. Distribution of neurons of the neural network in 
each attribute. 

Regarding the network's predictive capacity, the 
maximum probability of facies identification (track 5) 
correlated almost entirely with the predicted facies (track 
4). As for the probability of identifying each facies (track 
6), it was observed that only well C had an interval with 
strong overlap of EFACs 1 (shale) and 2 (sandstone), 
where only 1 occurs according to the predicted facies 
(Figure 9). 

Table 1 shows that the rate of facies reconstruction was 
100% in all wells. This result is important because it 
ensures that the entire range of interest was fully 
represented in the training set. 
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Figure 9. Probability of the input facies being correctly 
predicted along the interval (track 5) and distribution of 
this probability by facies (track 6). 

 
Table 1. Reconstruction rates matrix of facies after 
training the algorithm. 

 

The trained neural network was then used to classify the 
study area, resulting in a volume of facies (Figure 10) in 
which each value in a given (x, y and z) position 
corresponds to the most probable distribution of facies 
predicted by the DNNA, that is, each facies associated 
with its highest probability value. 

 
Figure 10. Volume of predicted facies by the DNNA. 

By means of a composite section crosscutting the wells, 
intercalations between conglomeratic, sandstone and 
shale facies were observed with a great lateral continuity 
predicted by DNNA in the interval that comprises the 
Carmópolis Member (Figure 11A). In addition, other 
shale facies less distributed in area were interpreted, 
which resulted in a stratified pattern to the reservoirs. In 
general, the predicted facies around the wells showed a 
good correlation with those already identified on each well 
and used in the training of the algorithm (Figure 11B, C 
and D). 

This observed pattern, although preliminary, is compatible 
with the large-scale geometry of the Sergipe-Alagoas 
basin contextualized in previous depositional models, 
which interpret the Carmópolis Member as the product of 
alluvial fans prograding lacustrine environment, and 
alluvial fans truncated by anastomosing fluvial systems 
(Azambuja Filho et al., 1980; Candido & Wardlaw, 1985; 
Sombra, 1987; Souza, 1989). 
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Figure 11. Composite section crossing the three wells in 
the study area (A); Predicted facies around well A (B), B 
(C) and C (D). 

Conclusions 

The DNNA method was useful for integrating seismic and 
well data. The algorithm enabled the training of a neural 
network that established the relationships between the 
seismic attributes extracted in a noisy data with very low 
vertical resolution and electrofacies from three wells that 
are on average 2.8 kilometers apart. By using the seismic 
data for the propagation of the relationship created, the 
method was able to classify and predict the occurrence of 
facies in the analyzed reservoir, information that was 
previously restricted only to the well. We assessed that 
the stratigraphic relationships and lateral variations of 
predicted facies by this methodology have a high degree 
of similarity when compared to previous depositional 
models of the Carmópolis Member. These results, 
although preliminary, are unprecedent in the Sergipe 
Alagoas Basin, and shows the confidence on DNNA to 
predict facies. Further works with drilling cores 
information and more wells should provide more reliable 
input data for the algorithm, improving the predictive 
capacity of the method.    
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